Suggested Solution to Quiz 2

April 7, 2016

1. (5 points) Can the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x), \quad 0<x<1 \\
X^{\prime}(0)=0, \quad X(1)=0
\end{array}\right.
$$

have nonpositive eigenvalues? Prove your statements. Write down all the eigenvalues and corresponding eigenfunctions.

Solution:

(a) No, the above eigenvalue problem only have positive eigenvalues.

In fact, let λ be the eigenvalue of the problem and $X(x)$ the corresponding eigenfunction. Multiply the equation $-X^{\prime \prime}(x)=\lambda X(x)$ by $X(x)$ and integrate with respect to x, then we get

$$
-\int_{0}^{1} X^{\prime \prime}(x) X(x) d x=\lambda \int_{0}^{1} X^{2}(x) d x
$$

With the help of the boundary conditions, we have

$$
-\int_{0}^{1} X^{\prime \prime}(x) X(x) d x=-\left.X^{\prime}(x) X(x)\right|_{0} ^{1}+\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x=\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x
$$

Therefore,

$$
\lambda=\frac{\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x}{\int_{0}^{1} X^{2}(x) d x} \geq 0
$$

If $\lambda=0$, then we must have $X^{\prime}(x) \equiv 0$ on $[0,1]$ which implies that $X(x)=$ Constant. Since $X(1)=0$, then $X(x) \equiv 0$ which is impossible. Therefore $\lambda>0$.
(b) Since $\lambda>0$, let $\lambda=\beta^{2}, \beta>0$. Then the general solutions of $-X^{\prime \prime}(x)=\lambda X(x)$ are

$$
X(x)=A \cos \beta x+B \sin \beta x
$$

Hence

$$
\begin{gathered}
0=X(1)=A \cos \beta+B \sin \beta \\
0=X^{\prime}(0)=B \beta
\end{gathered}
$$

Thus $B=0$ and $\cos \beta=0$. Therefore the eigenvalues are $\lambda_{n}=\left(\frac{\pi}{2}+n \pi\right)^{2}$ and corresponding eigenfunctions are $X_{n}(x)=\cos \left(\frac{\pi}{2}+n \pi\right) x$ for $n=1,2, \ldots$.
2. (5 points) Find the Fourier cosine series of $f(x)=x$ on $(0, \pi)$. Then find the sum

$$
\sum_{k=0}^{\infty}\left(\frac{1}{2 k+1}\right)^{4}=1+\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{5}\right)^{4}+\left(\frac{1}{7}\right)^{4}+\cdots
$$

by using Parseval's equality.

Solution: The Fourier cosine series of $f(x)=x$ on $(0, \pi)$ is

$$
f(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos n x
$$

where the coefficients are

$$
A_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi
$$

and

$$
\begin{aligned}
A_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\left.\frac{2}{n \pi} x \sin n x\right|_{0} ^{\pi}-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x \\
& =\frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right], \quad n=1,2, \cdots
\end{aligned}
$$

Hence

$$
x=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right) .
$$

The Parseval's equality is

$$
\int_{0}^{\pi}|f(x)|^{2} d x=\sum_{n=0}^{\infty}\left|A_{n}\right|^{2} \int_{0}^{\pi}\left|X_{n}(x)\right|^{2} d x
$$

Here $f(x)=x$ and $X_{0}(x)=\frac{1}{2}, X_{n}(x)=\cos n x, n=1,2, \cdots$, thus we have

$$
\frac{\pi^{3}}{3}=\pi^{2} \frac{\pi}{4}+\frac{\pi}{2} \frac{16}{\pi^{2}}\left[1+\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{5}\right)^{4}+\left(\frac{1}{7}\right)^{4}+\cdots\right]
$$

Hence

$$
\sum_{k=0}^{\infty}\left(\frac{1}{2 k+1}\right)^{4}=\frac{\pi^{4}}{96}
$$

